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INTRODUCTION 

 The generalized logarithmic series distribution 

(GLSD) characterized by two parameters 

and   was first obtained by Jain and Gupta 

(1973) and its probability function is given by:
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Since GLSD is generalization of logarithmic 

series distribution (LSD). GLSD will reduce to 

logarithmic series distribution (LSD) when 

taking 1 . 
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ABSTRACT 

The Generalized Logarithmic Series Distribution (GLSD) adds an extra parameter to the usual 

logarithmic series distribution and was introduced by Jain and Gupta (1973). This distribution 

has found applications in various fields. The estimation of parameters of generalized logarithmic 

series distribution was studied by the methods of maximum likelihood, moments, minimum chi 

square and weighted discrepancies. The GLSD was fitted to counts of red mites on apple leaves 

and it was observed that all the estimation techniques perform well in estimating the parameters 

of generalized logarithmic series distribution but with varying degree of non-significance. 
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GLSD is a member of Consul and Shenton 

(1972) family of Lagrangian probability 

distribution and also Gupta (1974) modified 

power series distribution (MPSD). The same 

distribution has been obtained by many more 

authors. The distribution has found 

applications in various fields. Jain and Gupta 

(1973) applied it to the William’s data on 

number of papers by entomologists, Rao 

(1981) applied it to the study of correlation 

between two types of children in a family, and 

Hansen and Willenkens (1990) used it in the 

risk theory in a problem related to the total 

claim size upto time t . The estimation of 

GLSD has been studied by many researchers, 

where as Gupta (1974) and Jani (1977) 

examined its minimum variance unbiased 

(MVU) estimation. Mishra (1979) discussed 

its maximum likelihood (ML) estimation, Jani 

and Shah (1979) discussed the method of 

moments of its estimation. Wani et al (2016) 

compared lagrangian probability distributions 

for counts of red mites on apple leaves in 

Kashmir valley. 

ESTIMATION OF PARAMETERS  

The various methods of estimation for 

estimating the parameters of Generalized 

Logarithmic Series distribution are as follows: 

Maximum likelihood Estimation of GLSD 

Consider a random sample of size N taken 

from the GLSD and let the observed 

frequencies be kxf x ...2,1;   so that 

Nf
k

x

x 
1

 where k is the largest of the 

observed values having non-zero frequencies. 

The likelihood equation of the GLSD can be 

written as 
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The log likelihood function is given as 
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The two likelihood functions can be obtained as 
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Where x  is the sample mean. From equation )2.2.1.3( , we get 
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Putting this equation in )2.2.1.3( , we get 
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Which can be solved for ̂ and ̂ , the M.L. estimators of  and   respectively. 
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Moment Estimation of GLSD 

The mean, the variance and the recurrence relation for higher moments is given by 
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Since 02   for    /11  , we will obtain the moment estimators of the parameters of 

the GLSD for the sample space   1/11   . 

From equation )1.4.1.3(

 

and )2.4.1.3( , we have 
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The equation )4.4.1.3( can be solved for   by using the method of iterations. To obtain the initial 

value of   expanding    122 Q  into power series expansion and neglecting 
3 and terms 

higher than that we get )4.4.1.3( as 
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where,  13  QQ  and Q  is given by equation )5.4.1.3(  

To get 
* , the moment estimator of ,   and 2  are to be replaced by their respective estimates 

sample mean X  and sample variance 
2S  of the observed data. 

Using equation )1.4.1.3( and replacing   by X , we get 
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Minimum chi-square for GLSD 
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Substituting the corresponding derivatives to )1.6.1.3( and )2.6.1.3( we get 
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The resulting equations )3.6.1.3( and )4.6.1.3( are known as minimum chi-square equations. 

 

Weighted discrepancies (WD) method 
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Subtracting  6.7.1.3  from  3.7.1.3  and  7.7.1.3  from  4.7.1.3 , we get 
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Substituting the corresponding expressions of the derivatives to  8.7.1.3  and  9.7.1.3 , we get 
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which has referred to Kemp (1986) as an equation from minimum discrimination information and ML 

estimation and called as weighted discrepancies estimation method. 
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NUMERICAL IILUSTRATION 

The GLSD was fitted to count of red mites on apple leaves. 

 

Table 1: Comparison of Observed frequencies with Expected frequencies of GLSD for Count of red mites 

on Apple Leaves 

No. of mites/leaf Observed Frequency 

Expected Frequency of GLSD 

Methods of Estimation 

ML Moments MC WD 

3 39 44.10 41.50 42.20 41.20 

4 22 18.30 19.50 19.40 19.40 

5 17 15.20 15.70 15.25 16.10 

6 15 12.70 11.90 12.85 12.50 

7 9 8.30 9.90 9.70 9.70 

8 6 5.40 5.20 5.00 5.40 

9 3 4.10 4.00 3.50 4.20 

10 1 1.90 2.20 2.00 1.80 

≥11 0 2.00 2.10 2.10 1.70 

Total 112 112.00 112.00 112.00 112.00 

Parameter (Estimates)   ̂  

̂  

 

0.781 

0.767 

 

0.715 

0.742 

 

0.725 

0.761 

 

0.703 

0.735 

2  

3.591 3.185 3.218 3.062 

p-value 0.892 0.922 0.920 0.930 

 

In the above table the estimates of parameters 

̂  and ̂  in different methods of estimation 

are ML (0.781, 0.767), Moments (0.715, 

0.742), MC (0.725, 0.761) and WD (0.703, 

0.735). The p-value of all the methods are non-

significant and in agreement with the observed 

frequencies. We observed that all the 

estimation techniques, the ML, the moment, 

the MC and the WD method perform well in 

estimating the GLSD parameters.  
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